## Chapter 6.1 part 1

Chapter 6 Ideals and quotient rings
Let $R, S$ be rings, and let $f: R \rightarrow S$ be a ring homomorphism
$f(a+b)=f(a)+f(b) \mid A$ crap which respects
$f(a b)=f(a) f(b) \quad$ the ring structure
Recall
Cor $3,1 l$ If $f: R \rightarrow S$ is a ring homomorphism, then the image of is a subsing in $S$.
$\operatorname{Im} f=\{f(a) \mid a \in R\} \subseteq S \quad \mid$ The map $f$ is surjective if $\operatorname{Jm} f=S$
Def kernel of a homomorphism $f: R \rightarrow S$

$$
\operatorname{Ker} f=\left\{a \in R \backslash f(a)=O_{s}\right\} \subseteq R \neq \phi \quad f\left(O_{R}\right)=O_{s}
$$

Th 6.11 The map $f$ is infective iff Kerf $f=\left\{O_{R}\right\}$
Prop For a ring homomorphism $f: R \rightarrow S$, Kerf is a subring in $R$.
Pf
(i) $a, b \in$ Kerf means $f(a)=O_{s}$ and $f(b)=O_{s}$

Thus $f(a-b)=f(a)-f(b)=O_{s}-O_{s}=O_{s}$ means $a-b \in \operatorname{ker} f V$
(2) $a, b \in \operatorname{kerf}$ weans $f(a)=O_{s}$ and $f(b)=O_{s}$

Thus $f(a b)=f(a) \cdot f(b)=O_{5}, O_{5} \equiv O_{5}$ weans $a b \in \operatorname{ker} f v$

Criterion to check
Th 3. 6 A nou-empty subset $K \subseteq R$ is a subring iff
(1) $a, b \in K$ implies $a-b \in K$
(2) $a, b \in K$ implies $a b \in K$

We can strengthen (2):
overkill!
$r \in R \quad a \in \operatorname{Ker} f \quad f(a r)=f(a) f(r)=O_{s} f(r)=O_{s}$ means ar $\in \operatorname{Ker} f$

$$
f(r a)=f(r) f(a)=f(r) O_{s}=O_{s} \text { weans } r a \in \text { kex } f
$$

Def $A$ subring I of a ring $R$ is called an ideal (in $R$ ) provided:
Proved:
Thb.lo Let $f: R \rightarrow S$ be a homomorphism of rings property

Then Kerf is an ideal in $R$
$\overline{6} \times 6$ Not every subring is an ideal $\mathbb{Z} \subset \mathbb{Q}$ - does not have the absorbtion property Ideals are very special subtings.
Th 6.1 A non-empty subset $I \subset R$ of a sing $R$ is an ideal iff
(1) $a, b \in I$ implies $a-b \in I$
(2) $a \in I, r \in R$ implies $a r \in I$ and $r a \in I$

Examples $R \supset\left\{O_{R}\right\}$-ideal
$R \supseteq R$-ideal $\}$ Trivial
$\pi, n \in \pi \quad \pi \supset 4 n a \mid a \in \pi y$-ideal (become strivial if $n=0, n= \pm 1$ )
$F[x], p \in F[x] \quad F[x] \supset\{f p \mid f \in F[x]\}$-ideal (becomes trivial if $p=O_{F}$ or $p$ is a unit in $F[x]$ )
Th 6,2 Let $R$ be a commentative sing with identity.
For $c \in R$, the set, $I=\{r e \mid r \in R\}$ is an ideal.
def: principal ideal
More generally:
Th G. 3 Let R be a commentative king with identity.
Let $c_{2}, \ldots, c_{n}$ be a collection of elements of $R$.
Then the set $\underbrace{I=\left\{r_{1} c_{1}+\ldots+r_{n} c_{n} \mid r_{1}, r_{2}, \ldots, \gamma_{n} \in R Y\right.}_{\text {def: finitely generated ideal }}$ is an ideal def: finitely generated ideal
Ex 9,8 $\quad 2=\mathbb{Z}[x] \quad c_{2}=2 \quad c_{1}=x$

$$
I=4 x f+2 g \mid f, g \in Z[x]\} \text { - finitely generated ideal }
$$

Gexereise 15 I - the set of all polynomials in $Z[x]$ with even constant term.
Let $h=2 c_{0}+a_{x}+\ldots+c_{n} x^{n} \quad c_{0}, \ldots c_{n} \in \eta_{2}$. Then
br =x.f+2g with $g=c_{0} \in \pi_{2}[x]$, constant polynomial

$$
f=\left\{\begin{array}{l}
0 \text { if deg } h=0 \text { or } h=0 \\
a_{1}+c_{2} x+\ldots+c_{n} x^{n-1}
\end{array}\right.
$$

Prop I is not a principal ideal $\quad \xi$ There are rings which have Pf non-prineipal ideals

Assume $I=\{p f \mid f \in \mathbb{Z}[x]\}$
Wanted: such $p \in \mathbb{Z}[x]$ cannot exist
$2 \in I$, thins $2=p f_{1}$ with $f_{1} \in \nabla_{R}[x]$

$$
\begin{aligned}
& \operatorname{deg}(2)=\operatorname{deg} p+\operatorname{deg} f_{1} \\
& 0=\operatorname{deg} p+\operatorname{deg} f_{1} \quad \text { implies } \operatorname{deg} p=0 \quad p \in Z
\end{aligned}
$$

$x \in I$, thus $x=p f_{2}$ with $f_{2} \in \eta_{2}[x]$

$$
\begin{aligned}
\operatorname{deg} x & =\operatorname{deg} p+\operatorname{deg} f_{2} \\
1 & =0+1 \quad \text { deg } f_{2}=1 \quad \text { implies } f_{2}=a x+b, a \neq 0 \\
x & =p(a x+b) \\
x & =p a x+b \quad \text { implies } b=0, \quad p a=1 \text { implies } p=1 \text { or } p=-1 . \\
& p, a \in \pi / 2
\end{aligned}
$$

In either case, $I=Z_{2}[x]$
That is not true because $I$ is the set of all polynomials with even constant terms noise $\mathbb{Z}[x]$ contains polynomials with odd constant terms.

Terminology
The word "ideal" - ideal numbers - Dedekind thought about any ideal as "principal" generated by an "ideal number" - an element of the ring which actually does not exist.

